		mark	comment	sub
1(i)	0	B1		1
(ii)	$v = 36 + 6t - 6t^2$	M1 A1	Attempt at differentiation	2
(iii)	a = 6 - 12t	M1 F1	Attempt at differentiation	2
(iv)	Take $a = 0$ so $t = 0.5$ and $v = 37.5$ so 37.5 m s ⁻¹	M1 A1 A1	Allow table if maximum indicated or implied FT their <i>a</i> cao Accept no justification given that this is maximum	3
(v)	either Solving $36+6t-6t^2=0$ so $t=-2$ or $t=3$ or Sub the values in the expression for v Both shown to be zero A quadratic so the only roots then $x(-2)=-34$ x(3)=91	M1 B1 E1 M1 E1 B1 B1	A method for two roots using their <i>v</i> Factorization or formula or of their expression Shown Allow just 1 substitution shown Both shown Must be a clear argument cao cao	5
(vi)	x(3) - x(0) + x(4) - x(3) = $ 91 - 10 + 74 - 91 $ = 98 so 98 m	M1 A1 A1	Considering two parts Either correct cao [SC 1 for $s(4) - s(0) = 64$]	3
(vii)	At the SP of v x(-2) = -34 i.e. < 0 and x(3) = 91 i.e. > 0 Also $x(-4) = 42 > 0 \text{ and}$ x(6) = -98 < 0	M1	Or any other valid argument e.g find all the zeros, sketch, consider sign changes. Must have some working. If only a sketch, must have correct shape.	
		B1	Doing appropriate calculations e.g. find all 3 zeros; sketch cubic reasonably (showing 3 roots); sign changes in range	
F	PRysies And Maths Tutor.com	1 ^{B1}	3 times seen	3

2(i) $a = 24 - 12t$ M1 Differentiate cao M1 Equate $v = 0$ and attempt to factorise (or solve). Award for one root found. Both. cao. (iii) $s = \int_{0}^{4} (24t - 6t^2) dt$ $= [12t^2 - 2t^3]_{0}^{4}$ M1 Attempt to integrate. No limits required. M1 Either term correct. No limits required. M2 Either term correct. No limits required. M3 Sub $t = 4$ in integral. Accept no bottom limit substituted or arb const assumed 0. Accept reversed limits. FT their limits. Cao. Award if seen. [If trapezium rule used. M1 At least 4 strips: M1 enough strips for 3 s. f. A1 (dep on 2^{nd} M1) One strip area correct: A1 cao]			mark		Sub
Need $24t - 6t^2 = 0$ $t = 0, 4$ M1 Equate $v = 0$ and attempt to factorise (or solve). Award for one root found. Both. cao. M1 Attempt to integrate. No limits required. $s = \int_{0}^{4} (24t - 6t^2) dt$ $= \left[12t^2 - 2t^3\right]_{0}^{4}$ $(12 \times 16 - 2 \times 64) - 0$ M1 Attempt to integrate. No limits required M1 Sub $t = 4$ in integral. Accept no bottom limit substituted or arb const assumed 0. Accept reversed limits. FT their limits. Their limits. Their limits. Their limits integral. A1 (dep on 2^{nd} M1) One strip area correct: A1 cao]	2(i)	a = 24 - 12t	M1		
$s = \int_{0}^{4} (24t - 6t^{2}) dt$ $= \left[12t^{2} - 2t^{3}\right]_{0}^{4}$ $(12 \times 16 - 2 \times 64) - 0$ $= 64 \text{ m}$ Attempt to integrate. No limits required. A1 Either term correct. No limits required M1 Sub $t = 4$ in integral. Accept no bottom limit substituted or arb const assumed 0. Accept reversed limits. FT their limits. A1 cao. Award if seen. [If trapezium rule used. M1 At least 4 strips: M1 enough strips for 3 s. f. A1 (dep on 2^{nd} M1) One strip area correct: A1 cao]	(ii)			(or solve). Award for one root found.	2
1 0			A1 M1	Either term correct. No limits required Sub $t = 4$ in integral. Accept no bottom limit substituted or arb const assumed 0. Accept reversed limits. FT their limits. cao. Award if seen. [If trapezium rule used. M1 At least 4 strips: M1 enough strips for 3 s. f.	4
		total	8		

3	(i)	$v = \int (4 - t) dt$	M1	Attempt to integrate	
		$v = 4t - \frac{1}{2}t^2 + c \qquad (t = 0, v = 0 \Longrightarrow c = 0)$ $v = 4t - \frac{1}{2}t^2 \text{ for } 0 \le t \le 4$	A1	Condone no mention of arbitrary constant	
		When $t = 4$, $v = 8$ and for $t > 4$, $a = 0$ so $v = 8$ for $t > 4$	B1	a = 0 must be seen or implied	
			[3]		
	(ii)	$s = \int (4t - \frac{1}{2}t^2) dt$	M1		
		$s = 2t^2 - \frac{1}{6}t^3$	A 1	Again condone no mention of arbitrary constant	
		When $t = 4$, Nina has travelled $2 \times 4^2 - \frac{1}{6} \times 4^3 = 21 \frac{1}{3} \text{ m}$	A1		
		When $t = 5\frac{1}{3}$, Nina has travelled $21\frac{1}{3} + 8 \times 1\frac{1}{3} = 32 \text{ m}$	F1	Allow follow through from their $21\frac{1}{3}$ Exact answer required; if rounded to 32, award 0	
			[4]		
	(iii)	When $t = 5\frac{1}{3}$, Marie has run $6 \times 5\frac{1}{3} = 32$ m.		Allow an equivalent argument that when Marie has run 32 m, $t = 5\frac{1}{3}$, as for Nina	
		Nina has also run 32 m so caught up Marie	B1	This mark is dependent on an answer 32 in part (ii) but allow this where it is a rounded answer and in this particular case the rounding can be in part (iii)	
			[1]		

		mark	notes
4(i)	For P: the distance is $8T$ For Q: the distance is $\frac{1}{2} \times 4 \times T^2$	B1 B1 2	Allow – ve. Allow any form. Allow – ve. Allow any form.
(ii)	Require $8T + \frac{1}{2} \times 4 \times T^2 = 90$	M1 A1	For linking correct expressions or their expressions from (i) with 90. Condone sign errors and use of displacement instead of distance. Condone '= 0'implied. The expression is correct or correctly derived from their (i). Reason not required.
	so $8T + 2T^2 - 90 = 0$ so $T^2 + 4T - 45 = 0$ This gives (T - 5)(T + 9) = 0 so $T = 5$ since $T > 0$	E1 M1 A1	Must be established. Do not award if their 'correct expression' comes from incorrect manipulation. Solving to find +ve root. Accept $(T+5)(T-9)$. Condone 2^{nd} root not found/discussed but not both roots given.
		7	

5(i)	a = 6t - 12	M1 A1	Differentiating cao	2
(ii)	We need $\int_{1}^{3} (3t^{2} - 12t + 14) dt$ = $\left[t^{3} - 6t^{2} + 14t \right]_{1}^{3}$ either	M1 A1	Integrating. Neglect limits. At least two terms correct. Neglect limits.	
	= (27 - 54 + 42) - (1 - 6 + 14)	M1	Dep on 1 st M1. Use of limits with attempt at subtraction seen.	
	= $15 - 9 = 6$ so 6 m or $s = t^3 - 6t^2 + 14t + C$ s = 0 when $t = 1$ gives 0 = 1 - 6 + 14 + C so $C = -9Put t = 3 to gives = 27 - 54 + 42 - 9 = 6$ so 6 m.	M1 A1	Dep on 1 st M1. An attempt to find C using $s(1) = 0$ and then evaluating $s(3)$.	4
(iii)	v > 0 so the particle always travels in the same (+ve) direction As the particle never changes direction, the final distance from the starting point is the displacement.	E1 E1	Only award if explicit Complete argument	
				8